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Abstract

Both linear mixed models (LMMs) and sparse regression models are widely used in genetics applications, including, recently,
polygenic modeling in genome-wide association studies. These two approaches make very different assumptions, so are
expected to perform well in different situations. However, in practice, for a given dataset one typically does not know which
assumptions will be more accurate. Motivated by this, we consider a hybrid of the two, which we refer to as a ‘‘Bayesian
sparse linear mixed model’’ (BSLMM) that includes both these models as special cases. We address several key
computational and statistical issues that arise when applying BSLMM, including appropriate prior specification for the
hyper-parameters and a novel Markov chain Monte Carlo algorithm for posterior inference. We apply BSLMM and compare
it with other methods for two polygenic modeling applications: estimating the proportion of variance in phenotypes
explained (PVE) by available genotypes, and phenotype (or breeding value) prediction. For PVE estimation, we demonstrate
that BSLMM combines the advantages of both standard LMMs and sparse regression modeling. For phenotype prediction it
considerably outperforms either of the other two methods, as well as several other large-scale regression methods
previously suggested for this problem. Software implementing our method is freely available from http://stephenslab.
uchicago.edu/software.html.
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Introduction

Both linear mixed models (LMMs) and sparse regression models

are widely used in genetics applications. For example, LMMs are

often used to control for population stratification, individual

relatedness, or unmeasured confounding factors when performing

association tests in genetic association studies [1–9] and gene

expression studies [10–12]. They have also been used in genetic

association studies to jointly analyze groups of SNPs [13,14].

Similarly, sparse regression models have been used in genome-

wide association analyses [15–20] and in expression QTL analysis

[21]. Further, both LMMs and sparse regression models have been

applied to, and garnered renewed interest in, polygenic modeling

in association studies. Here, by polygenic modeling we mean any

attempt to relate phenotypic variation to many genetic variants

simultaneously (in contrast to single-SNP tests of association). The

particular polygenic modeling problems that we focus on here are

estimating ‘‘chip heritability’’, being the proportion of variance in

phenotypes explained (PVE) by available genotypes [19,22–24],

and predicting phenotypes based on genotypes [25–29].

Despite the considerable overlap in their applications, in the

context of polygenic modeling, LMMs and sparse regression

models are based on almost diametrically opposed assumptions.

Precisely, applications of LMMs to polygenic modeling (e.g. [22])

effectively assume that every genetic variant affects the phenotype,

with effect sizes normally distributed, whereas sparse regression

models, such as Bayesian variable selection regression models

(BVSR) [18,19], assume that a relatively small proportion of all

variants affect the phenotype. The relative performance of these

two models for polygenic modeling applications would therefore

be expected to vary depending on the true underlying genetic

architecture of the phenotype. However, in practice, one does not

know the true genetic architecture, so it is unclear which of the two

models to prefer. Motivated by this observation, we consider a

hybrid of these two models, which we refer to as the ‘‘Bayesian

sparse linear mixed model’’, or BSLMM. This hybrid includes

both the LMM and a sparse regression model, BVSR, as special

cases, and is to some extent capable of learning the genetic

architecture from the data, yielding good performance across a

wide range of scenarios. By being ‘‘adaptive’’ to the data in this

way, our approach obviates the need to choose one model over the

other, and attempts to combine the benefits of both.

The idea of a hybrid between LMM and sparse regression

models is, in itself, not new. Indeed, models like these have been

used in breeding value prediction to assist genomic selection in

animal and plant breeding programs [30–35], gene selection in

expression analysis while controlling for batch effects [36],

phenotype prediction of complex traits in model organisms and

dairy cattle [37–40], and more recently, mapping complex traits

by jointly modeling all SNPs in structured populations [41].

Compared with these previous papers, our work makes two key

contributions. First, we consider in detail the specification of
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appropriate prior distributions for the hyper-parameters of the

model. We particularly emphasize the benefits of estimating the

hyper-parameters from the data, rather than fixing them to pre-

specified values to achieve the adaptive behavior mentioned

above. Second, we provide a novel computational algorithm that

exploits a recently described linear algebra trick for LMMs [8,9].

The resulting algorithm avoids ad hoc approximations that are

sometimes made when fitting these types of model (e.g. [37,41]),

and yields reliable results for datasets containing thousands of

individuals and hundreds of thousands of markers. (Most previous

applications of this kind of model involved much smaller datasets.)

Since BSLMM is a hybrid of two widely used models, it

naturally has a wide range of potential uses. Here we focus on its

application to polygenic modeling for genome-wide association

studies, specifically two applications of particular interest and

importance: PVE estimation (or ‘‘chip heritability’’ estimation) and

phenotype prediction. Estimating the PVE from large-scale

genotyped marker sets (e.g. all the SNPs on a genome-wide

genotyping chip) has the potential to shed light on sources of

‘‘missing heritability’’ [42] and the underlying genetic architecture

of common diseases [19,22–24,43]. And accurate prediction of

complex phenotypes from genotypes could ultimately impact

many areas of genetics, including applications in animal breeding,

medicine and forensics [27–29,37–40]. Through simulations and

applications to real data, we show that BSLMM successfully

combines the advantages of both LMMs and sparse regression, is

robust to a variety of settings in PVE estimation, and outperforms

both models, and several related models, in phenotype prediction.

Methods

Background and Motivation
We begin by considering a simple linear model relating

phenotypes y to genotypes X:

y~1nmzXbzee, ð1Þ

ee*MVNn(0,Int{1): ð2Þ

Here y is an n-vector of phenotypes measured on n individuals,

X is an n|p matrix of genotypes measured on the same

individuals at p genetic markers, b is a p-vector of (unknown)

genetic marker effects, 1n is an n-vector of 1 s, m is a scalar

representing the phenotype mean, and e is an n-vector of error

terms that have variance t{1. MVN n denotes the n-dimensional

multivariate normal distribution. Note that there are many ways in

which measured genotypes can be encoded in the matrix X. We

assume throughout this paper that the genotypes are coded as 0, 1

or 2 copies of a reference allele at each marker, and that the

columns of X are centered but not standardized; see Text S1.

A key issue is that, in typical current datasets (e.g. GWAS), the

number of markers p is much larger than the number of

individuals n. As a result, parameters of interest (e.g. b or PVE)

cannot be estimated accurately without making some kind of

modeling assumptions. Indeed, many existing approaches to

polygenic modeling can be derived from (1) by making specific

assumptions about the genetic effects b. For example, the LMM

approach from [22], which has recently become commonly used

for PVE estimation (e.g. [24,44–46]), is equivalent to the

assumption that effect sizes are normally distributed, such that

bi*N(0,s2
b=(pt)): ð3Þ

[Specifically, exact equivalence holds when the relatedness matrix

in the LMM is computed from the genotypes as K~
1

p
XXT (e.g.

[47]). [22] use a matrix in this form, with X centered and

standardized, and with a slight modification of the diagonal

elements.] For brevity, in this paper we refer to the regression

model that results from this assumption as the LMM (note that this

is relatively restrictive compared with the usual definition); it is also

commonly referred to as ‘‘ridge regression’’ in statistics [48]. The

estimated combined effects (Xb), or equivalently, the estimated

random effects, obtained from this model are commonly referred

to as Best Linear Unbiased Predictors (BLUP) [49].

An alternative assumption, which has also been widely used in

polygenic modeling applications [18,19,34], and more generally in

statistics for sparse high-dimensional regression with large

numbers of covariates [50,51], is that the effects come from a

mixture of a normal distribution and a point mass at 0, also known

as a point-normal distribution:

bi*pN(0,s2
a=(pt))z(1{p)d0, ð4Þ

where p is the proportion of non-zero b and d0 denotes a point

mass at zero. [This definition of p follows the convention from

statistics [19,50,51], which is opposite to the convention in animal

breeding [27,32–34,40].] We refer to the resulting regression

model as Bayesian Variable Selection Regression (BVSR), because

it is commonly used to select the relevant variables (i.e. those with

non-zero effect) for phenotype prediction. Although (4) formally

includes (3) as a special case when p~1, in practice (4) is often

used together with an assumption that only a small proportion of

the variables are likely to be relevant for phenotype prediction, say

by specifying a prior distribution for p that puts appreciable mass

on small values (e.g. [19]). In this case, BVSR and LMM can be

viewed as making almost diametrically opposed assumptions: the

LMM assumes every variant has an effect, whereas BVSR assumes

that a very small proportion of variants have an effect. (In practice,

the estimate of sb under LMM is often smaller than the estimate of

sa under BVSR, so we can interpret the LMM as assuming a large

number of small effects, and BVSR as assuming a small number of

larger effects.)

A more general assumption, which includes both the above as

special cases, is that the effects come from a mixture of two normal

Author Summary

The goal of polygenic modeling is to better understand
the relationship between genetic variation and variation in
observed characteristics, including variation in quantitative
traits (e.g. cholesterol level in humans, milk production in
cattle) and disease susceptibility. Improvements in poly-
genic modeling will help improve our understanding of
this relationship and could ultimately lead to, for example,
changes in clinical practice in humans or better breeding/
mating strategies in agricultural programs. Polygenic
models present important challenges, both at the model-
ing/statistical level (what modeling assumptions produce
the best results) and at the computational level (how
should these models be effectively fit to data). We develop
novel approaches to help tackle both these challenges,
and we demonstrate the gains in accuracy that result in
both simulated and real data examples.
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distributions:

bi*pN(0,(s2
azs2

b)=(pt))z(1{p)N(0,s2
b=(pt)), ð5Þ

Setting p~0 yields the LMM (3), and sb~0 yields BVSR (4). we

can interpret this model as assuming that all variants have at least

a small effect, which are normally distributed with variance

s2
b=(pt), and some proportion (p) of variants have an additional

effect, normally distributed with variance s2
a=(pt). The earliest use

of a mixture of two normal distributions for the regression

coefficients that we are aware of is [52], although in that paper

various hyper-parameters were fixed, and so it did not include

LMM and BVSR as special cases.

Of the three assumptions on the effect size distributions

above, the last (5) is clearly the most flexible since it includes

the others as special cases. Obviously other assumptions are

possible, some still more flexible than the mixture of two

normals: for example, a mixture of three or more normals.

Indeed, many other assumptions have been proposed, includ-

ing variants in which a normal distribution is replaced by a t
distribution. These variants include the ‘‘Bayesian alphabet

models’’ – so-called simply because they have been given

names such as BayesA, BayesB, BayesC, etc. – that have been

proposed for polygenic modeling, particularly breeding value

prediction in genomic selection studies. Table 1 summarizes

these models, and some other effect size distributions that have

been proposed, together with relevant references (see also [53]

and the references there in). Among these, the models most

closely related to ours are BayesCp [34] and BayesR [35].

Specifically, BayesCp without a random effect is BVSR, and

with a random effect is BSLMM (which we define below).

BayesR models effect sizes using a mixture of three normal

components plus a point mass at zero, although the relative

variance for each normal distribution is fixed.

Given the wide range of assumptions for effect size

distributions that have been proposed, it is natural to wonder

which are the most appropriate for general use. However,

answering this question is complicated by the fact that even

given the effect size distribution there are a number of different

ways that these models can be implemented in practice, both in

terms of statistical issues, such as treatment of the hyper-

parameters, and in terms of computational and algorithmic

issues. Both these types of issues can greatly affect practical

performance. For example, many approaches fix the hyper-

parameters to specific values [27,32,33,40] which makes them

less flexible [34,54]. Thus, in this paper we focus on a

particular effect size distribution (5), which while not the most

flexible among all that could be considered, is certainly more

flexible than the one that has been most used in practice for

estimating PVE (LMM), and admits certain computational

methods that could not be applied in all cases. We consider in

detail how to apply this model in practice, and the resulting

advantages over LMM and BVSR (although we also compare

with some other existing approaches). A key contribution of

this paper is to provide new approaches to address two

important practical issues: the statistical issue of how to deal

with the unknown hyper-parameters (p,sa,sb), and the

computational issue of how to fit the model. Notably, with

the computational tools we use here, fitting the model (5)

becomes, for a typical dataset, less computationally intensive

than fitting BVSR, as well as providing gains in performance.

With this background, we now turn to detailed description of

the model, its prior specification and its computation algorithm.

The Bayesian Sparse Linear Mixed Model
In this paper we focus on the simple linear model (1) with

mixture prior (5) on the effects. However, the computational and

statistical methods we use here also apply to a more general model,

which we refer to as the Bayesian Sparse Linear Mixed Model

(BSLMM), and which includes the model (1) with (5) as a special

case.

The BSLMM consists of a standard linear mixed model, with

one random effect term, and with sparsity inducing priors on the

regression coefficients:

Table 1. Summary of some effect size distributions that have been proposed for polygenic modeling.

Effect Size Distribution Keywords Selected References

Name Formula

t bi*t(0,n,s2
a) BayesA [27,32,33,40]

point-t bi*pt(0,n,s2
a)z(1{p)d0 BayesB, BayesD, BayesDp [27,32–34,40]

t mixture bi*pt(0,n,s2
a)z(1{p)t(0,n,0:01s2

a) BayesC [32,33]

point-normal bi*pN(0,s2
a)z(1{p)d0 BayesC, BayesCp, BVSR [18,19,34]

double exponential bi*DE(0,h) Bayesian Lasso [28,39,68]

point-normal mixture bi*p1 N(0,s2
a)zp2 N(0,0:1s2

a)zp3

N(0,0:01s2
a)z(1{p1{p2{p3)d0

BayesR [35]

normal bi*N(0,s2
a) LMM, BLUP, Ridge Regression [22,26,28,48]

normal-exponential-gamma bi*NEG(0,k,h) NEG [16]

normal mixture bi*pN(0,s2
azs2

b)z(1{p)N(0,s2
b) BSLMM Present Work

The reference list contains only a selection of relevant publications. Abbreviations: DE denotes double exponential distribution, NEG denotes normal exponential
gamma distribution, and other abbreviations can be found in the main text. In the scaled t-distribution, n and s2

a are the degree of freedom parameter and scale
parameter, respectively. In the DE distribution, h is the scale parameter. In the NEG distribution, k and h are the shape and scale parameters, respectively. Notes: 1. Some
applications of these methods combine a particular effect size distribution with a random effects term, with covariance matrix K , to capture sample structure or

relatedness. If K!XX T then this is equivalent to adding a normal distribution to the effect size distribution. The listed effect size distributions in this table do not
include this additional normal component. 2. BayesC has been used to refer to models with different effect size distributions in different papers. 3. In some papers,
keywords listed here have been used to refer to fitting techniques rather than effect size distributions.
doi:10.1371/journal.pgen.1003264.t001
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y~1nmzX~bbzuzee, ð6Þ

u*MVNn(0,s2
bt{1K), ð7Þ

ee*MVNn(0,t{1In), ð8Þ

~bbi*pN(0,s2
at{1)z(1{p)d0, ð9Þ

where u is an n-vector of random effects with known n|n

covariance matrix K. In referring to u as the ‘‘random effects’’ we

are following standard terminology from LMMs. Standard

terminology also refers to the coefficients ~bb as ‘‘fixed effects’’,

but this phrase has a range of potential meanings [55] and so we

avoid it here. Instead we use the term ‘‘sparse effects’’ for these

parameters to emphasize the sparsity-inducing prior.

It is straightforward to show that when K~
1

p
XXT , BSLMM is

equivalent to the simple linear model (1) with mixture prior (5) on
the effects. However, our discussion of prior specification,
computational algorithms, and software, all apply for any K.

When we say that (6) is equivalent to (1) with (5), this

equivalence refers to the implied probability model for y given

X and the hyper-parameters m,t,p,sa,sb. However, ~bb and b are

not equivalent (explaining our use of two different symbols): in (6)

the random effect u captures the combined small effects of all

markers, whereas in (1) these small effects are included in b. Since

both our applications focus on the relationship between y and X,

and not on interpreting estimates of b or ~bb, we do not concern

ourselves any further with this issue, although it may need

consideration in applications where individual estimated genetic

effects are of more direct interest (e.g. genetic association

mapping). A related issue is the interpretation of the random

effect u in BSLMM: from the way we have presented the material

u is most naturally interpreted as representing a polygenic

component, specifically the combined effect of a large number of

small effects across all measured markers. However, if there are

environmental factors that influence the phenotype and are

correlated with genotype (e.g. due to population structure), then

these would certainly affect estimates of u, and consequently also

affect estimates of other quantities, including the PVE. In addition,

phenotype predictions from BSLMM will include a component

due to unmeasured environmental factors that are correlated with

measured genotypes. These issues are, of course, not unique to

BSLMM – indeed, they apply equally to the LMM; see [56] and

the response from [57] for relevant discussion.

Finally, given the observation that a mixture of two normals is

more flexible than a point-normal, it might seem natural to

consider modifying (6) by making the assumption that ~bb comes

from a mixture of two normal distributions rather than a point-

normal. However, if K~
1

p
XXT then this modification is simply

equivalent to changing the values of sa,sb.

Prior Specification
The BSLMM involves (hyper-)parameters, m,t,p,sa, and sb.

Before considering prior specification for these parameters, we

summarize their interpretations as follows:

N m and t{1 control the phenotype mean and residual variance.

N p controls the proportion of ~bb values in (6) that are non-zero.

N sa controls the expected magnitude of the (non-zero) ~bb.

N sb controls the expected magnitude of the random effects u.

Appropriate values for these parameters will clearly vary for

different datasets, so it seems desirable to estimate them from the

data. Here we accomplish this in a Bayesian framework by

specifying prior distributions for the parameters, and using

Markov chain Monte Carlo (MCMC) to obtain approximate

samples from their posterior distribution given the observed data.

Although one could imagine instead using maximum likelihood to

estimate the parameters, the Bayesian framework has several

advantages here: for example, it allows for incorporation of

external information (e.g. that most genetic markers will,

individually, have small effects), and it takes into account of

uncertainty in parameter estimates when making other inferences

(e.g. phenotype prediction).

For the mean m and the inverse of error variance, t, we use the

standard conjugate prior distributions:

t*Gamma(k1,k2), ð10Þ

mDt*N(0,s2
mt{1), ð11Þ

where k1 and k2 denote, respectively, shape and rate parameters

of a Gamma distribution. Specifically we consider the posterior

that arises in the limits k1?0, k2?0 and s2
m??. These limits

correspond to improper priors, but the resulting posteriors are

proper, and scale appropriately with shifting or scaling of the

phenotype vector y [58]. In particular, these priors have the

property that conclusions will be unaffected by changing the units

of measurement of the phenotype, which seems desirable for a

method intended for general application.

Prior specification for the remaining hyper-parameters p,s2
a,s2

b

is perhaps more important. Our approach is to extend the prior

distributions for BVSR described in [19].

Following [19] we place a uniform prior on log p:

log(p)*U(log(1=p),log(1)), ð12Þ

where p is total number of markers being analyzed. The upper and

lower limit of this prior were chosen so that p (the expected

proportion of markers with non-zero ~bb) ranges from 1=p to 1. A

uniform prior on log p reflects the fact that uncertainty in p in

a typical GWAS will span orders of magnitude. A common

alternative (see e.g. [18,34]) is a uniform distribution on p, but

as noted in [19] this puts large weight on large numbers of

markers having non-zero ~bb (e.g. it would correspond to placing

50% prior probability to the event that more than half of the

markers have non-zero ~bb, and correspond to placing 90% prior

probability to the event that more than 10% of the markers

have non-zero ~bb).

To specify priors for sa and sb, we exploit the following idea

from [19]: prior specification is easier if we first re-parame-

terize the model in terms of more interpretable quantities.

Specifically we extend ideas from [19] to re-parameterize the

model in terms of the (expected) proportion of phenotypic

variance explained by the sparse effects and by the random

effects.

Polygenic Modeling with BSLMM
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To this end, we define PVE (the total proportion of variance in

phenotype explained by the sparse effects and random effects

terms together) and PGE (the proportion of genetic variance

explained by the sparse effects terms) as functions of ~bb, u and t:

PVE(~bb,u,t) : ~
V(X~bbzu)

V(X~bbzu)zt{1
, ð13Þ

PGE(~bb,u) : ~
V(X~bb)

V(X~bbzu)
, ð14Þ

where the function V(x) is defined as

V(x) : ~
1

n

Xn

i~1

(xi{�xx)2: ð15Þ

These definitions ensure that both PVE and PGE must lie in the

interval ½0,1�. PVE reflects how well one could predict phenotype

y from the available SNPs if one knew the optimal ~bb as well as the

random effects u; together with PVE, PGE reflects how well one

could predict phenotype y using ~bb alone.

Since PVE and PGE are functions of (~bb,u,t), whose distribu-

tions depend on hyper-parameters p,sa,sb, the prior distribution

for PVE and PGE depends on the priors assigned to these hyper-

parameters. In brief, our aim is to choose priors for the two hyper-

parameters s2
a and s2

b so that the induced priors on both PVE and

PGE are roughly uniform on 0 and 1. (Other distributions could

be chosen if desired, but we consider this uniform distribution one

reasonable default.) However, because the relationship between

the distribution of PVE, PGE and the hyper-parameters is not

simple, we have to make some approximations.

Specifically, we introduce h,r as approximations (they are ratios

of expectations rather than expectations of ratios) to the

expectations of PVE and PGE, respectively:

h : ~
ppsas2

azsbs2
b

ppsas2
azsbs2

bz1
, ð16Þ

r : ~
ppsas2

a

ppsas2
azsbs2

b

, ð17Þ

where sa is the average variance of genotypes across markers, and

sb is the mean of diagonal elements in K. In other words,

sa~
1

np

Xp

i~1

Xn

j~1
x2

ij and sb~
1

n

Xn

i~1
kii, where xij and kij

are the ijth elements of matrices X and K, respectively. See Text

S1 for derivations. Intuitively, the term ppsas2
a captures the

expected genetic variance contributed by the sparse effects term

(relative to the error variance), because pp is the expected number

of causal markers, s2
a is the expected effect size variance of each

causal marker (relative to the error variance), and sa is the average

variance of marker genotypes. Similarly, the term sbs2
b captures

the expected genetic variance contributed by the random effects

term (relative to the error variance), because s2
b is the expected

variance of the random effects (relative to the error variance) when

the relatedness matrix has unit diagonal elements, while sb

properly scales it when not.

The parameter r provides a natural bridge between the LMM

and BVSR: when r~0 BSLMM becomes the LMM, and when

r~1 BSLMM becomes BVSR. In practice, when the data favors

the LMM, the posterior distribution of r would mass near 0, and

when the data favors BVSR, the posterior distribution of r would

mass near 1.

In summary, the above re-parameterizes the model in terms of

(h,r,p) instead of (sa,sb,p). Now, instead of specifying prior

distributions for sa,sb, we rather specify prior distributions for h,r.

Specifically we use uniform prior distributions for h,r:

h*U(0,1), ð18Þ

r*U(0,1), ð19Þ

independent of one another and of p. Since h and r approximate

PVE and PGE, these prior distributions should lead to reasonably

uniform prior distributions for PVE and PGE, which we view as

reasonable defaults for general use. (If one had specific information

about PVE and PGE in a given application then this could be

incorporated here.) In contrast it seems much harder to directly

specify reasonable default priors for sa,sb (although these priors

on h,r,p do of course imply priors for sa,sb; see Text S1).

Note that we treat h and r as approximations to PVE and PGE

only for prior specification; when estimating PVE and PGE from

data we do so directly using their definitions (13) and (14) (see

below for details).

Posterior Sampling Scheme
To facilitate computation, we use the widely-used approach

from [52] of introducing a vector of binary indicators

c~(c1, � � � ,cp)[f0,1gp
that indicates whether the corresponding

coefficients ~bb are non-zero. The point-normal priors for ~bb can then

be written

ci*Bernoulli(p), ð20Þ

~bbc*MVNDc D(0,s2
at{1IDc D), ð21Þ

~bb{c*d0, ð22Þ

where ~bbc denotes the sub-vector of ~bb corresponding to the entries

fi : ci~1g; ~bb{c denotes the sub-vector of ~bb corresponding to the

other entries, fi : ci~0g; and DcD denotes the number of non-zero

entries in c. We use MCMC to obtain posterior samples of

(h,r,p,c) on the product space (0,1)|(0,1)|(0,1)|f0,1gp
, which

is given by

P(h,r,p,cDy)!P(yDh,r,p,c)P(h)P(r)P(cDp)P(p): ð23Þ

The marginal likelihood P(yDh,r,p,c) can be computed analyti-

cally integrating out (~bb,u,t); see below for further details. We use a

Metropolis-Hastings algorithm to draw posterior samples from the

above marginal distribution. In particular, we use a rank based

proposal distribution for c [19], which focus more of the

computational time on examining SNPs with stronger marginal

associations.

Polygenic Modeling with BSLMM
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We use the resulting sample from the posterior distribution (23)

to estimate PVE and PGE as follows. For each sampled value of

(h,r,p,c), we sample a corresponding value for (t,~bb,u) from the

conditional distribution P(t,~bb,uDy,h,r,p,c). We then use each

sampled value of (t,~bb,u) to compute a sampled value of PVE and

PGE, using equations (13) and (14). We estimate the posterior

mean and standard deviation of PVE, PGE, from these samples.

The novel part of our algorithm is a new efficient approach to

evaluating the likelihood P(yDh,r,p,c) that considerably reduces

the overall computational burden of the algorithm. The direct

naive approach to evaluating this likelihood involves a matrix

inversion and a matrix determinant calculation that scale cubically

with the number of individuals n, and this cost is incurred every

iteration as hyper parameter values change. Consequently, this

approach is impractical for typical association studies with large n,

and ad hoc approximations are commonly used to reduce the

burden. For example, both [37] and [41] fix s2
b to some pre-

estimated value. As we show later, this kind of approximation can

reduce the accuracy of predicted phenotypes. Here, we avoid such

approximations by exploiting recently developed computational

tricks for LMMs [8,9]. The key idea is to perform a single eigen-

decomposition and use the resulting unitary matrix (consisting of

all eigen vectors) to transform both phenotypes and genotypes to

make the transformed values follow independent normal distribu-

tions. By extending these tricks to BSLMM we evaluate the

necessary likelihoods much more efficiently. Specifically, after a

single n3 operation at the start of the algorithm, the per iteration

computational burden is linear in n (the same as BVSR), allowing

large studies to be analyzed.

Full details of the sampling algorithm appear in Text S2.

URLs
Software implementing our methods is included in the

GEMMA software package, which is freely available at http://

stephenslab.uchicago.edu/software.html.

Results

Simulations: PVE Estimation
Both the LMM and BVSR have been used to estimate the PVE

[19,22]. Since the LMM assumes that all SNPs have an effect,

while BVSR assumes that only a small proportion of SNPs have an

effect, we hypothesize that BVSR will perform better when the

true underlying genetic structure is sparse and LMM will perform

better when the true genetic structure is highly polygenic. Further,

because BSLMM includes both as special cases, we hypothesize

that BSLMM will perform well in either scenario.

To test these hypotheses, we perform a simulation using real

genotypes at about 300,000 SNPs in 3,925 Australian individuals

[22], and simulate phenotypes under two different scenarios. In

Scenario I we simulate a fixed number S of causal SNPs (with

S~10,100,1000,10000), with effect sizes coming from a standard

normal distribution. These simulations span a range of genetic

architectures, from very sparse to highly polygenic. In Scenario II

we simulate two groups of causal SNPs, the first group containing

a small number of SNPs of moderate effect (S~10 or S~100),

plus a second larger group of 10,000 SNPs of small effect

representing a ‘‘polygenic component’’. This scenario might be

considered more realistic, containing a mix of small and larger

effects. For both scenarios we added normally-distributed errors to

phenotype to create datasets with true PVE = 0.6 and 0.2

(equation 13). We simulate 20 replicates in each case, and run

the algorithms with all SNPs, including the simulated causal

variants, so that the true PVE for typed markers is either 0.6 or 0.2

(if we excluded the causal variants then the true PVE would be

unknown).

Figure 1A and 1C, show the root of mean square error (RMSE)

of the PVE estimates obtained by each method, and Figure 1B and

1D summarize the corresponding distributions of PVE estimates.

In agreement with our original hypotheses, BVSR performs best

(lowest RMSE) when the true model is sparse (e.g. Scenario I,

S~10 or S~100 in Figure 1A, 1C). However, it performs very

poorly under all the other, more polygenic, models. This is due to

a strong downward bias in its PVE estimates (Figure 1B, 1D).

Conversely, under the same scenarios, LMM is the least accurate

method. This is because the LMM estimates have much larger

variance than the other methods under these scenarios

(Figure 1B,1D), although, interestingly, LMM is approximately

unbiased even in these settings where its modeling assumptions are

badly wrong. As hypothesized, BSLMM is robust across a wider

range of settings than the other methods: its performance lies

between LMM and BVSR when the true model is sparse, and

provides similar accuracy to LMM when not.

Of course, in practice, one does not know in advance the correct

genetic architecture. This makes the stable performance of

BSLMM across a range of settings very appealing. Due to the

poor performance of BVSR under highly polygenic models, we

would not now recommend it for estimating PVE in general,

despite its good performance when its assumptions are met.

Simulations: Phenotype Prediction
We also compare the three methods on their ability to predict

phenotypes from genotypes, using the same simulations.

To measure prediction performance, we use relative prediction

gain (RPG; see Text S1). In brief, RPG is a standardized version of

mean square error: RPG = 1 when accuracy is as good as possible

given the simulation setup, and RPG = 0 when accuracy is the

same as simply predicting everyone to have the mean phenotype

value. RPG can be negative if accuracy is even worse than that.

Figure 2 compares RPG of different methods for simulations

with PVE = 0.6 (results for PVE = 0.2 are qualitatively similar, not

shown). Interestingly, for phenotype prediction, the relative

performance of the methods differs from results for PVE

estimation. In particular, LMM performs poorly compared with

the other two methods in all situations, except for Scenario I with

S~10,000, the Scenario that comes closest to matching the

underlying assumptions of LMM. As we expect, BSLMM

performs similarly to BVSR in scenarios involving smaller

numbers of causal SNPs (up to S~1,000 in Scenario I), and

outperforms it in more polygenic scenarios involving large

numbers of SNPs of small effect (e.g. Scenario II). This is

presumably due to the random effect in BSLMM that captures the

polygenic component, or, equivalently, due to the mixture of two

normal distributions in BSLMM that better captures the actual

distribution of effect sizes. The same qualitative patterns hold

when we redo these simulation comparisons excluding the causal

SNPs (Figure S1) or use correlation instead of RPG to assess

performance (Figure S2 and Figure S3).

For a potential explanation why LMM performs much less well

for phenotype prediction than for PVE estimation, we note the

difference between these two problems: to accurately estimate

PVE it suffices to estimate the ‘‘average’’ effect size reliably,

whereas accurate phenotype prediction requires accurate estimates

of individual effect sizes. In situations where the normal

assumption on effect sizes is poor, LMM tends to considerably

underestimate the number of large effects, and overestimate the

number of small effects. These factors can cancel one another out

Polygenic Modeling with BSLMM
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in PVE estimation, but both tend to reduce accuracy of phenotype

prediction.

Estimating PVE in Complex Human Traits
To obtain further insights into differences between LMM,

BVSR and BSLMMM, we apply all three methods to estimate the

PVE for five traits in two human GWAS datasets. The first dataset

contains height measurements of 3,925 Australian individuals with

about 300,000 typed SNPs. The second dataset contains four

blood lipid measurements, including high-density lipoprotein

(HDL), low-density lipoprotein (LDL), total cholesterol (TC) and

triglycerides (TG) from 1,868 Caucasian individuals with about

550,000 SNPs. The narrow sense heritability for height is

estimated to be 0.8 from twin-studies [22,59]. The narrow sense

heritabilities for the lipid traits have been estimated, in isolated

founder populations, to be 0.63 for HDL, 0.50 for LDL, 0.37 for

TG in Hutterites [60], and 0.49 for HDL, 0.42 for LDL, 0.42 for

TC and 0.32 for TG in Sardinians [61].

Table 2 shows PVE estimates from the three methods for the

five traits. PVE estimates from BVSR are consistently much

smaller than those obtained by LMM and BSLMM, which are

almost identical for two traits and similar for the others. Estimates

of PVE from both LMM and BSLMM explain over 50% of the

narrow sense heritability of the five traits, suggesting that a sizable

proportion of heritability of these traits can be explained, either

directly or indirectly, by available SNPs.

Figure 1. Comparison of PVE estimates from LMM (blue), BVSR (red), and BSLMM (purple) in two simulation scenarios. The x-axis
show the number of causal SNPs (Scenario I) or the number of medium/small effect SNPs (Scenario II). Results are based on 20 replicates in each case.
(A) (true PVE = 0.2) and (C) (true PVE = 0.6) show RMSE of PVE estimates. (B) (true PVE = 0.2) and (D) (true PVE = 0.6) show boxplots of PVE estimates,
where the true PVE is shown as a horizontal line. Notice a break point on the y-axis in (C).
doi:10.1371/journal.pgen.1003264.g001

Figure 2. Comparison of prediction performance of LMM
(blue), BVSR (red), and BSLMM (purple) in two simulation
scenarios, where all causal SNPs are included in the data.
Performance is measured by Relative Predictive Gain (RPG). True
PVE = 0.6. Means and standard deviations (error bars) are based on 20
replicates. The x-axis show the number of causal SNPs (Scenario I) or the
number of medium/small effect SNPs (Scenario II).
doi:10.1371/journal.pgen.1003264.g002
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These results, with LMM and BSLMM providing similar

estimates of PVE, and estimates from BVSR being substantially

lower, are consistent with simulation results for a trait with

substantial polygenic component. One feature of BSLMM, not

possessed by the other two methods, is that it can be used to

attempt to quantify the relative contribution of a polygenic

component, through estimation of PGE, which is the proportion of

total genetic variance explained by ‘‘large’’ effect size SNPs (or

more precisely, by the additional effects of those SNPs above a

polygenic background). Since the PGE is defined within an

inevitably over-simplistic model, specifically that effect sizes come

from a mixture of two normal distributions, and also because it will

be influenced by unmeasured environmental factors that correlate

with genetic factors, we caution against over-interpreting the

estimated values. We also note that estimates of PGE for these data

(Table 2) are generally not very precise (high posterior standard

deviation). Nonetheless, it is interesting that the estimated PGE for

height, at 0.12, is lower than for any of the lipid traits (ranging

from 0.18 for TG to 0.46 for TC), and that all these estimates

suggest a substantial contribution from small polygenic effects in

all five traits.

Predicting Disease Risk in the WTCCC Dataset
To assess predictive performance on real data, we turn to the

Wellcome trust case control consortium (WTCCC) 1 study [62],

which have been previously used for assessing risk prediction [63–

65]. These data include about 14,000 cases from seven common

diseases and about 3,000 shared controls, typed at a total of about

450,000 SNPs. The seven common diseases are bipolar disorder

(BD), coronary artery disease (CAD), Crohn’s disease (CD),

hypertension (HT), rheumatoid arthritis (RA), type 1 diabetes

(T1D) and type 2 diabetes (T2D).

We compared the prediction performance of LMM, BVSR and

BSLMM for all seven diseases. Following [64], we randomly split

the data for each disease into a training set (80% of individuals)

and a test set (remaining 20%), performing 20 such splits for each

disease. We estimated parameters from the training set by treating

the binary case control labels as quantitative traits, as in [5,9].

[This approach can be justified by recognizing the linear model as

a first order Taylor approximation to a generalized linear model;

we discuss directly modeling binary phenotypes in the Discussion

section.] We assess prediction performance in the test set by area

under the curve (AUC) [66].

Figure 3 shows AUC for the three methods on all seven diseases.

As in our simulations, we find BSLMM performs as well as or

better than either of the other two methods for all seven diseases.

Indeed, the performance of BSLMM appears to compare

favorably with previous methods applied to the same dataset

[63–65] (a precise comparison with previous results is difficult, as

some studies use slightly different splitting strategies [63,65] and

some do not perform full cross validation [64]). As might be

expected from the simulation results, BVSR performs better than

LMM in diseases where a small number of relatively strong

associations were identified in the original study [62] (CD, RA and

T1D) and worse in the others. We obtained qualitatively similar

results when we measured performance using the Brier score

instead of AUC (Text S3; Figure S4).

Finally, we caution that, although BSLMM performs well here

relative to other methods, at the present time, for these diseases, its

prediction accuracy is unlikely to be of practical use in human

clinical settings. In particular, in these simulations the number of

cases and controls in the test set is roughly equal, which represents

a much easier problem than clinical settings where disease

prevalence is generally low even for common diseases (see [64]

for a relevant discussion).

Predicting Quantitative Phenotypes in Heterogeneous
Stock Mice

In addition to the WTCCC dataset, we also assess perdition

performance using a mouse dataset [67], which has been widely

used to compare various phenotype prediction methods [37–39].

The mouse dataset is substantially smaller than the human data

(n&1000,p&10,000, with exact numbers varying slightly depend-

ing on the phenotype and the split). This makes it computationally

feasible to compare with a wider range of other methods.

Therefore, we include in our comparisons here five other related

approaches, some of which have been proposed previously for

phenotype prediction. Specifically we compare with:

1. LMM-Bayes, a Bayesian version of the LMM, which we fit by

setting r~0 in BSLMM using our software.

2. Bayesian Lasso [39,68], implemented in the R package BLR

[39].

3. BayesA-Flex, our own modification of BayesA, which

assumes a t distribution for the effect sizes. Our modification

involves estimating the scale parameter associated with the t4

distribution from the data (Text S1). Although the original

BayesA performs poorly in this dataset [38], this simple

modification greatly improves its prediction performance

(emphasizing again the general importance of estimating

hyper-parameters from the data rather than fixing them to

arbitrary values). We modified the R package BLR [39] to

obtain posterior samples from this model.

4. BayesCp, implemented in the online software GenSel [34].

This implementation does not allow random effects, and

therefore uses the same model as our BVSR, although with

different prior distributions.

5. BSLMM-EB (where EB stands for empirical Bayes; this is a

slight abuse of terminology, since in this method the estimated

hyper parameters are obtained under the model with ~bb~0), an

approximation method to fit BSLMM. The method fixes the

variance component s2
b to its REML (restricted maximum

likelihood) estimate obtained with ~bb~0, which is one of several

strategies used in previous studies to alleviate the computa-

tional burden of fitting models similar to BSLMM [37,41]. We

sample posteriors from this model using our software.

See Text S1 for further details.

Table 2. PVE and PGE estimates for five human traits.

Method Height HDL LDL TC TG

PVE LMM 0.42
(0.08)

0.38 (0.15) 0.22 (0.18) 0.22 (0.17) 0.34
(0.17)

BVSR 0.15
(0.03)

0.06 (0.01) 0.10 (0.08) 0.15 (0.07) 0.05
(0.06)

BSLMM 0.41
(0.08)

0.34 (0.14) 0.22 (0.14) 0.26 (0.14) 0.29
(0.17)

PGE BSLMM 0.12
(0.13)

0.21 (0.14) 0.27 (0.26) 0.46 (0.30) 0.18
(0.20)

PVE estimates are obtained using LMM, BVSR and BSLMM, while PGE estimates
are obtained using BSLMM. Values in parentheses are standard error (for LMM)
or standard deviation of posterior samples (for BVSR and BSLMM).
n~3,925,p~294,831 for height, and n~1,868,p~555,601 for other four traits.
doi:10.1371/journal.pgen.1003264.t002
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Following previous studies that have used these data for

prediction [37–39] we focused on three quantitative phenotypes:

CD8, MCH and BMI. These phenotypes have very different

estimated narrow sense heritabilities: 0.89, 0.48, and 0.13

respectively [69]. Table S1 lists estimates of some key quantities

for the three traits – including PVE, PGE and log10 (p) – obtained

from LMM, BVSR and BSLMM. All three methods agree well on

the PVE estimates, suggesting that the data is informative enough

to overwhelm differences in prior specification for PVE estimation.

Following [37,38], we divide the mouse dataset roughly half and

half into a training set and a test set. As the mice come from 85

families, and individuals within a family are more closely related

than individuals from different families, we also follow previous

studies and use two different splits of the data: the intra-family split

mixes all individuals together and randomly divides them into two

sets of roughly equal size; the inter-family split randomly divides the

85 families into two sets, where each set contains roughly half of

the individuals. We perform 20 replicates for each split of each

phenotype. It is important to note that the intra-family split

represents an easier setting for phenotype prediction, not only

because individuals in the test set are more related genetically to

those in the training set, but also because the individuals in the test

set often share a similar environment with those in the training set

(specifically, in the intra-family split, many individuals in the test

set share a cage with individuals in the training set, but this is not

the case in the inter-family split).

We apply each method using genotypes only, without other

covariates. We obtain effect size estimates in the training dataset,

and assess prediction performance using these estimates in the test

set by root of mean square error (RMSE), where the mean is

across individuals in the test set. We contrast the performance of

other methods to BSLMM by calculating the RMSE difference,

where a positive number indicates worse performance than

BSLMM. We perform 20 inter-family splits and 20 intra-family

splits for each phenotype.

Figure 4 summarizes the prediction accuracy, measured by

RMSE, of each method compared against BSLMM. Measuring

prediction performance by correlation gives similar results (Figure

S5). For the low-heritability trait BMI, where no measured SNP

has a large effect, all methods perform equally poorly. For both

the more heritable traits, CD8 and MCH, BSLMM consistently

outperformed all other methods, which seem to split into two

groups: LMM, LMM-Bayes and Bayesian Lasso perform least

well and similarly to one another on average; BVSR, BayesA-

Flex, BayesCp and BSLMM-EB perform better, and similarly to

one another on average. A general trend here is that accuracy

tends to increase as model assumptions improve in their ability to

capture both larger genetic effects, and the combined ‘‘polygen-

ic’’ contribution of smaller genetic effects (and possibly also

confounding environmental effects correlating with genetic

background). In particular, the t4 distribution underlying

BayesA-Flex, which has a long tail that could capture large

effects, performs noticeably better than either the normal or

double-exponential distributions for effect sizes underlying LMM

and Bayesian Lasso.

Comparisons of pairs of closely-related methods yield additional

insights into factors that do and do not affect prediction accuracy.

The fact that BSLMM performs better than BSLMM-EB

illustrates how the approximation used in BSLMM-EB can

degrade prediction accuracy, and thus demonstrates the practical

benefits of our novel computational approach that avoids this

approximation. Similarly, the superior performance of BayesA-

Flex over BayesA (which performed poorly; not shown) also

illustrates the benefits of estimating hyper parameters from the

data, rather than fixing them to pre-specified values. The similar

performance between BVSR and BayesCp, which fit the same

model but with different priors, suggests that, for these data, results

are relatively robust to prior specification. Presumably, this is

because the data are sufficiently informative to overwhelm the

differences in prior.

Figure 3. Comparison of prediction performance of LMM (blue), BVSR (red), and BSLMM (purple) for seven diseases in the WTCCC
dataset. Performance is measured by area under the curve (AUC), where a higher value indicates better performance. The order of the diseases is
based on the performance of BSLMM. The mean and standard deviation of AUC scores for BSLMM in the seven diseases are 0.60 (0.02) for HT, 0.60
(0.03) for CAD, 0.61 (0.03) for T2D, 0.65 (0.02) for BD, 0.68 (0.02) for CD, 0.72 (0.01) for RA, 0.88 (0.01) for T1D.
doi:10.1371/journal.pgen.1003264.g003
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Computational Speed
The average computational time taken for each method on the

Mouse data is shown in Table 3. Some differences in computa-

tional time among methods may reflect implementational issues,

including the language environment in which the methods are

implemented, rather than fundamental differences between

algorithms. In addition, computing times for many methods will

be affected by the number of iterations used, and we did not

undertake a comprehensive evaluation of how many iterations

suffice for each algorithm. Nonetheless, the results indicate that

our implementation of BSLMM is competitive in computing speed

with the other (sampling-based) implementations considered here.

In particular, we note that BSLMM is computationally faster

than BVSR. This is unexpected, since BSLMM is effectively

BVSR plus a random effects term, and the addition of a random

effects term usually complicates computation. The explanation

for this is that the (per-iteration) computational complexity of

both BSLMM and BVSR depends, quadratically, on the number

of selected SNPs in the sparse effects term (DcD), and this number

can be substantially larger with BVSR than with BSLMM,

because with BVSR additional SNPs are included to mimic the

effect of the random effects term in BSLMM. The size of this

effect will vary among datasets, but it can be substantial,

particularly in cases where there are a large number of causal

SNPs with small effects.

To illustrate this, Table 4 compares mean computation time

for BSLMM vs BVSR for all datasets used here. For simulated

data with a small number of causal SNPs, BSLMM and BVSR

have similar computational times. However, in other cases

(e.g. PVE = 0.6, S = 10,000 in Scenario I) BSLMM can be over

an order of magnitude faster than BVSR. In a sense, this speed

improvement of BSLMM over BVSR is consistent with its hybrid

nature: in highly polygenic traits, BSLMM tends to behave

similarly to LMM, resulting in a considerable speed gain.

Discussion

We have presented novel statistical and computational methods

for BSLMM, a hybrid approach for polygenic modeling for

GWAS data that simultaneously allows for both a small number of

individually large genetic effects, and combined effects of many

small genetic effects, with the balance between the two being

inferred from the data in hand. This hybrid approach is both

computationally tractable for moderately large datasets (our

implementation can handle at least 10,000 individuals with

Figure 4. Comparison of prediction performance of several models with BSLMM for three traits in the heterogenous stock mouse
dataset. Performance is measured by RMSE difference with respect to BSLMM, where a positive value indicates worse performance than BSLMM. The
x-axis shows two different ways to split the data into a training set and a test set, each with 20 replicates. The mean RMSE of BSLMM for the six cases
are 0.70, 0.80, 0.79, 0.90, 0.98 and 0.99, respectively.
doi:10.1371/journal.pgen.1003264.g004

Table 3. Mean computation time, in hours, of various
methods for the mouse dataset.

Method Time in hrs (sd)

LMM 0.007 (0.002)

LMM-Bayes 0.14 (0.02)

BSLMM-EB 2.44 (3.52)

BSLMM 3.86 (4.13)

BVSR 9.20 (6.36)

BayesCp 39.4 (11.7)

BayesA-Flex 68.6 (8.06)

Bayesian Lasso 78.6 (23.4)

Values in parentheses are standard deviations. Means and standard deviations
are calculated based on 2.1 million MCMC iterations in 120 replicates: 20 intra-
family and 20 inter-family splits for three phenotypes. Computations were
performed on a single core of an Intel Xeon L5420 2.50 GHz CPU. Since
computing times for many methods will vary with number of iterations used,
and we did not undertake a comprehensive evaluation of how many iterations
suffice for each algorithm, these results provide only a very rough guide to the
relative computational burden of different methods.
doi:10.1371/journal.pgen.1003264.t003
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500,000 SNPs on our moderately-equipped modern desktop

computer), and is sufficiently flexible to perform well in a wide

range of settings. In particular, depending on the genetic

architecture, BSLMM is either as accurate, or more accurate,

than the widely-used LMM for estimating PVE of quantitative

traits. And for phenotype prediction BSLMM consistently

outperformed a range of other approaches on the examples we

considered here. By generalizing two widely-used models, and

including both as special cases, BSLMM should have many

applications beyond polygenic modeling. Indeed, despite its

increased computational burden, we believe that BSLMM

represents an attractive alternative to the widely-used LASSO

[70] for general regression-based prediction problems.

Although it was not our focus here, BSLMM can be easily

modified to analyze binary phenotypes, including for example, a

typical human case-control GWAS. For PVE estimation, one can

directly apply BSLMM, treating the 1/0 case-control status as a

quantitative outcome, and then apply a correction factor derived

by [24] to transform this estimated PVE on the ‘‘observed scale’’ to

an estimated PVE on a latent liability scale. This correction, for

which we supply an alternative derivation in Text S3, corrects for

both ascertainment and the binary nature of case-control data. For

phenotype prediction, one can again directly apply BSLMM,

treating the 1/0 case-control status as a quantitative outcome, as

we do here for the WTCCC dataset, and interpret the resulting

phenotype predictions as the estimated probability of being a case.

Although in principle one might hope to improve on this by

modifying BSLMM to directly model the binary outcomes, using a

probit link for example, we have implemented this probit

approach and found that not only is it substantially more

computationally expensive (quadratic in n instead of linear in n),

but it performed slightly worse than treating the binary outcomes

as quantitative, at least in experiments based on the mouse

phenotypes considered here (Text S3 and Figure S6), which is

consistent with previous findings in quantitative trait loci mapping

[71]. This may partly reflect inaccuracies introduced by the known

greater computational burden and corresponding mixing issues

with probit models (e.g. [72]) which are magnified here by the

polygenic nature of the traits, and partly reflect robustness of linear

models to model misspecification.

The computational innovations we introduce here, building on

work by [8,9], make BSLMM considerably more tractable than it

would otherwise be. Nonetheless, the computational burden, as

with other posterior sampling based methods, remains heavy, both

due to memory requirements (e.g. to store all genotypes) and CPU

time (e.g. for the large number of sampling iterations required for

reasonable convergence). Although more substantial computation-

al resources will somewhat increase the size of data that can be

tackled, further methodological innovation will likely be required

to apply BSLMM to the very large datasets that are currently

being collected.

In addition to providing a specific implementation that allows

BSLMM to be fitted to moderately large datasets, we hope that

our work also helps highlight some more general principles for

improving polygenic modeling methodology. These include:

1. The benefits of characterizing different methods by their effect

size distribution assumptions. While this point may seem

obvious, and is certainly not new (e.g. [40,73]), polygenic

modeling applications often focus on the algorithm used to fit

the model, rather than the effect size distribution used. While

computational issues are very important, and often interact

with modeling assumptions, we believe it is important to

distinguish, conceptually, between the two. One benefit of

characterizing methods by their modeling assumptions is that it

becomes easier to predict which methods will tend to do well in

which settings.

2. The importance of selecting a sufficiently flexible distribution

for effect sizes. The version of BSLMM we focus on here (with

K~
1

p
XXT ) assumes a mixture of two (zero-mean) normals for

the effect size distribution. Our examples demonstrate the gain

in performance this achieves compared to less flexible

distributions such as a single normal (LMM) or a point-normal

(BVSR). More generally, in our phenotype prediction exper-

iments, methods with more flexible effect size distributions

tended to perform better than those with less flexible

distributions.

3. The importance of estimating hyper-parameters from data,

rather than fixing them to pre-specified values. Here we are

echo-ing and reinforcing similar themes emphasized by [34]

and [19]. Indeed, our comparison between BSLMM and

BSLMM-EB for phenotype prediction illustrates the benefits

not only of estimating hyper-parameters from the data, but of

doing so in an integrated way, rather than as a two-step

procedure.

4. The attractiveness of specifying prior distributions for hyper-

parameters by focusing on the proportion of variance in

phenotypes explained by different genetic components (e.g.

PVE and PGE in our notation). This idea is not limited to

BSLMM, and could be helpful even with methods that make

use of other effect size distributions.

One question to which we do not know the answer is how often

the mixture of two normal distributions underlying BSLMM will

be sufficiently flexible to capture the actual effect size distribution,

and to what extent more flexible distributional assumptions (e.g. a

mixture of more than two normals, or a mixture of t distributions

with degrees of freedom estimated from the data) will produce

meaningful gains in performance. It seems likely that, at least in

some cases, use of a more flexible distribution will improve

performance, and would therefore be preferable if it could be

accomplished with reasonable computational expense. Unfortu-

nately some of the tricks we use to accomplish computational gains

here may be less effective, or difficult to apply, for more flexible

distributions. In particular, the tricks we use from [8] and [9] may

be difficult to extend to allow for mixtures with more than two

components. In addition, for some choices of effect size

distribution, one might have to perform MCMC sampling on

the effect sizes ~bb directly, rather than sampling c, integrating ~bb out

analytically, as we do here. It is unclear whether this will

necessarily result in a loss of computational efficiency: sampling ~bb
reduces computational expense per update at the cost of increasing

the number of updates necessary (sampling c by integrating over ~bb
analytically ensures faster mixing and convergence [74,75]).

Because of these issues, it is difficult to predict which effect size

distributions will ultimately provide the best balance between

modeling accuracy and computational burden. Nonetheless,

compared with currently available alternatives, we believe that

BSLMM strikes an appealing balance between flexibility, perfor-

mance, and computational tractability.

Supporting Information

Figure S1 Comparison of prediction performance of LMM

(blue), BVSR (red) and BSLMM (purple) in two simulation

scenarios, where all causal SNPs are excluded from the data.
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Performance is measured by Relative Predictive Gain (RPG). True

PVE = 0.6. Means and standard deviations (error bars) are based

on 20 replicates. The x-axis show the number of causal SNPs

(Scenario I) or the number of medium/small effect SNPs (Scenario

II).

(EPS)

Figure S2 Comparison of prediction performance of LMM

(blue), BVSR (red) and BSLMM (purple) in two simulation

scenarios, where all causal SNPs are included in the data.

Performance is measured by correlation. True PVE = 0.6. Means

and standard deviations (error bars) are based on 20 replicates.

The x-axis show the number of causal SNPs (Scenario I) or the

number of medium/small effect SNPs (Scenario II).

(EPS)

Figure S3 Comparison of prediction performance of LMM

(blue), BVSR (red) and BSLMM (purple) in two simulation

scenarios, where all causal SNPs are excluded from the data.

Performance is measured by correlation. True PVE = 0.6. Means

and standard deviations (error bars) are based on 20 replicates.

The x-axis show the number of causal SNPs (Scenario I) or the

number of medium/small effect SNPs (Scenario II).

(EPS)

Figure S4 Comparison of prediction performance of LMM

(blue), BVSR (red) and BSLMM (purple) for seven diseases in the

WTCCC dataset. Performance is measured by Brier score, where

a lower score indicates better performance. The order of the

diseases is based on the performance of BSLMM. The mean and

standard deviation of Brier scores for BSLMM in the seven

diseases are 0.232 (0.004) for HT, 0.230 (0.004) for CAD, 0.230

(0.003) for T2D, 0.222 (0.004) for BD, 0.211 (0.004) for CD, 0.204

(0.004) for RA, 0.139 (0.006) for T1D.

(EPS)

Figure S5 Comparison of prediction performance of several

models with BSLMM for three traits in the heterogenous stock

mouse dataset. Performance is measured by correlation difference

with respect to BSLMM, where a positive value indicates better

performance than BSLMM. The x-axis shows two different ways

to split the data into a training set and a test set, each with 20

replicates. The mean correlation of BSLMM for the six cases are

0.72, 0.61, 0.61, 0.47, 0.21 and 0.14, respectively.

(EPS)

Figure S6 Comparison of prediction performance between

BSLMM and probit BSLMM for three binary traits in the

heterogenous stock mouse dataset. Performance is measured by

Brier score difference with respect to BSLMM, where a positive

value indicates worse performance than BSLMM. The x-axis

shows two different ways to split the data into a training set and a

test set, each with 20 replicates. The mean Brier scores of BSLMM

for the six cases are 0.185, 0.205, 0.201, 0.236, 0.245 and 0.249,

respectively.

(EPS)

Table S1 Estimates of PVE, PGE and log10 (p) for CD8, MCH

and BMI in the mouse dataset. PVE estimates are obtained using

LMM, BVSR and BSLMM, log10 (p) estimates are obtained using

BVSR and BSLMM, and PGE estimates are obtained using

BSLMM. Values in parentheses are standard error (for LMM) or

standard deviation of posterior samples (for BVSR and BSLMM).

n~1,410,p~10,768 for CD8, n~1,580,p~10,744 for MCH,

and n~1,828,p~10,771 for BMI.

(PDF)

Text S1 Detailed Methods.

(PDF)

Text S2 Detailed MCMC Strategy for BSLMM.

(PDF)

Text S3 The Probit BSLMM and Binary Traits.

(PDF)
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